

 Navigation

 	
 index

 	
 next |

 	Onctuous 0.5.2 documentation

Onctuous documentation.

Overview

Onctuous is a fluid and pleasing to use validation tool you will love to
use. Originally based on Voluptuous [https://github.com/alecthomas/voluptuous]
code by Alec Thomas <alec@swapoff.org>, we first fixed long outstanding issues
like Python builtins collision and added support for default values.

	The goal of Onctuous is to make it simple and smooth.

	
	You can write your own validators

	You can specify defaults. The best ? They are not required to pass validation themselves

	You can write readable code. This is not based on json schema specification, on purpose

You can use Onctuous to validate list, scalar (regular variables) or
dict. For this purpose, you will need to define a so-called Schema and
call the Schema with the input to validate. In case of success, it will return
the validated input, possibly filtered or edited according to your rules

Documentation

User guide

	Getting started with Onctuous
	Installation

	Example usage
	Validate a scalar

	Validate a list

	Validate a dictionary

	Nested and advanced validations

	Going further

	Extending Onctuous
	Folder structure

	Adding a custom validator

	Adding a custom marker

	Change log - Migration guide.
	Onctuous 0.5.2
	Changes

	Onctuous 0.5.1
	Additions

	Changes

	Onctuous 0.5.0
	Additions

	Changes

	Removal

Api reference

	Errors
	SchemaError class

	Invalid class

	InvalidList class

	Schema class
	Class definition

	Schema validators and markers
	Markers

	Validators

Indices and tables

	Index

	Module Index

	Search Page

Contribute

Want to contribute, report a but of request a feature ? The development goes on
BitBucket:

	Download: http://pypi.python.org/pypi/onctuous

	Report bugs: https://bitbucket.org/Ludia/onctuous/issues

	Fork the code: https://bitbucket.org/Ludia/onctuous/overview

 Copyright 2012, Ludia Inc..
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 	v0.5.2

 	v0.5.1

 	v0.5.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Onctuous 0.5.2 documentation

Getting started with Onctuous

Onctuous is a fluid and pleasing to use validation tool you will love to
use. Originally based on Voluptuous [https://github.com/alecthomas/voluptuous]
code by Alec Thomas <alec@swapoff.org>, we first fixed long outstanding issues
like Python builtins collision and added support for default values.

	The goal of Onctuous is to make it simple and smooth.

	
	You can write your own validators

	You can specify defaults. The best ? They are not required to pass validation themselves

	You can write readable code. This is not based on json schema specification, on purpose

You can use Onctuous to validate list, scalar (regular variables) or
dict. For this purpose, you will need to define a so-called Schema and
call the Schema with the input to validate. In case of success, it will return
the validated input, possibly filtered or edited according to your rules

Installation

$ pip install onctuous

Example usage

Validate a scalar

from onctuous import Schema

validate_is_int = Schema(int)

Validate 42 (this will run fine)
validated = validate_is_int(42)

Validate "toto" (this will raise ``InvalidList`` containing a list of errors)
validated = validate_is_int("toto")

Validate a list

Using the same idea, you can validate a list of int

from onctuous import Schema

validate_is_int_list = Schema([int])

This will run fine
validated = validate_is_int_list([42, 2, 7])

This will raise ``InvalidList`` containing a list of errors
validated = validate_is_int_list([2, 7, "toto"])

But we can also use on of the bundled validators and check the URL looks to
be valid for example and even supply a custom error message!

from onctuous import Schema, Url

validate_is_urls = Schema([Url(msg="Ooops, this is *not* a valid URL")])

This will run fine
validated = validate_is_urls(["www.example.com", "ftp://user:pass@ftp.example.com:42/toto?weird/path"])

This will raise ``InvalidList`` containing a list of errors
validated = validate_is_urls([2, 7, "toto"])

Validate a dictionary

Again, this is the same concept with some more niceties. For example, here is a
basic user schema:

from onctuous import Schema, Url

validate_user = Schema({
 'firstname': unicode,
 'lastname': unicode,
 'age': int,
 'website': Url(msg="Ooops, this is *not* a valid URL"),
})

use it...

But wait, I don’t want megative ages, do I ?

from onctuous import Schema, Url, InRange, All

validate_user = Schema({
 'firstname': unicode,
 'lastname': unicode,
 'age': All(int, InRange(min=0, msg="Uh, ages can not be negative...")),
 'website': Url(msg="Ooops, this is *not* a valid URL"),
})

use it...

Have you noticed how this uses All to specify that both int and range
conditions must ne met ?

What if I want to make the “Website” field optional ? Let me introduce Markers

from onctuous import Schema, Url, InRange, All, Optional

validate_user = Schema({
 'firstname': unicode,
 'lastname': unicode,
 'age': All(int, InRange(min=0, msg="Uh, ages can not be negative...")),
 Optional('website'): Url(msg="Ooops, this is *not* a valid URL"),
})

use it...

You could also have used the ‘Required’ Marker with a default value. This is very
usefull if you do not want to spend your whole time writing if key in data....

from onctuous import Schema, Url, InRange, All, Required

validate_user = Schema({
 'firstname': unicode,
 'lastname': unicode,
 'age': All(int, InRange(min=0, msg="Uh, ages can not be negative...")),
 Required('website', "#"): Url(msg="Ooops, this is *not* a valid URL"),
})

use it...

It is worth noting that that the provided default value does not need to pass
validations. You can use it as a “Marker” further in you application.

Nested and advanced validations

You can nest shemas. You actually did it in the previous example where scalars
are nested into a dict or a list. But you can arbitrarily nest lists into dict
and the other way around, as you need.

For example, let’s say you are writing a blog post which obviously has an author
and maybe some tags whose len are between 3 and 20 chars included.

from onctuous import Schema, All, Required, Length, InRange

Same schema as user above. I just removed the Schema instanciation but
could have kept it. It's just more natural
user = {
 'firstname': unicode,
 'lastname': unicode,
 'age': All(int, InRange(min=0, msg="Uh, ages can not be negative...")),
 Required('website', "#"): Url(msg="Ooops, this is *not* a valid URL"),
}

validate_post = Schema({
 'title': unicode,
 'body': unicode,
 'author': user, # look how you can split a schema into re-usable chunks!
 Optional('tags'): [All(unicode, Length(min=3, max=20))],
 Required('website', "#"): Url(msg="Ooops, this is *not* a valid URL"),
})

use it...

That’s all for nesting.

You could also use the Extra special key to allow extra fields to be present
while still being valid.

When instanciating the schema, there are also a global required and extra
parameters that can optionally be set. They both default to False

Going further

There are tons of bundled validators, see the full API documentation
for a full list.

 Copyright 2012, Ludia Inc..
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 	v0.5.2

 	v0.5.1

 	v0.5.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Onctuous 0.5.2 documentation

Extending Onctuous

Folder structure

Onctuous
+-- onctuous => the real code
| +-- tests
| +-- unit => all individual validators and low level logic
| `-- functional => global behovior
+-- docs
 `-- pages => what you are reading

Adding a custom validator

If you want to contribute to Onctuous (we would love it btw), you will need
to add your custom validator into ddmock.validators module. Otherwise, put it
wherever you want, there are no restrictions.

By convention, validators are:

	Callable

	Returns the validated value on success, even unmodified. This ensures chainability

	Raises Invalid on failure

All validators will look like this:

Parent function: loads the parameters
def ValidatorName(param1, param2, msg=None):
 # this 'inner' function does the real job and is called by ``Onctuous``
 def f(v):
 if some condition:
 return v # All changes done to the value will be reflected in the validated object
 raise Invalid(msg or 'Ooops: "Some Condition" was not met!')
 return f

For example, here is the Url validator:

def Url(msg=None):
 """Verify that the value is a URL."""
 def f(v):
 try:
 urlparse.urlparse(v)
 return v
 except:
 raise Invalid(msg or 'expected a URL')
 return f

That’s all you need to do!

Adding a custom marker

Sadly, this is quite more invasive to do and will probably require you to patch
the heart of Onctuous.

Markers lives in the same module as Validators: ddmock.validators and are
also callable.

The most simple Marker you can do is the “Optional” marker:

class Optional(Marker):
 """Mark a node in the schema as optional."""

But you could override __init__ or __call__ for instance.

Then, Marker presence is detected in Schema._validate_dict in module
ddmock.schema, that is to say, the heart of Onctuous

 Copyright 2012, Ludia Inc..
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 	v0.5.2

 	v0.5.1

 	v0.5.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Onctuous 0.5.2 documentation

Change log - Migration guide.

Onctuous 0.5.2

This section documents all user visible changes included between Onctuous
versions 0.5.1 and Onctuous versions 0.5.2

Changes

	packaging fixes

	Coerce is now idempotent

Onctuous 0.5.1

This section documents all user visible changes included between Onctuous
versions 0.5.0 and Onctuous versions 0.5.1

Includes niceties and bugfixes according to real-world(tm) libraries ddbmock and
dynamodb-mapper.

Additions

	official, full documentation

Changes

	split onctuous into sub-modules

	better error messages

	support for None as a default value

Onctuous 0.5.0

This section documents all user visible changes included between Voluptuous
versions 0.4.2 and Onctuous versions 0.5.0

Initial Voluptuous fork by Ludia. There was no changelog before.

Additions

	default parameter to Required marker.

	100% unit/functional tests

	lots comments

Changes

	Renamed all validators to avoid built-in collisions

	InvalidList does not accept empty errors array

	lots of code cleanups

Removal

	defaults_to. It was inneficient and failed to add default value.

	most doctests

 Copyright 2012, Ludia Inc..
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 	v0.5.2

 	v0.5.1

 	v0.5.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Onctuous 0.5.2 documentation

Errors

SchemaError class

	
class onctuous.errors.SchemaError

	An error was encountered in the schema.

Invalid class

	
class onctuous.errors.Invalid(message, path=None)

	The data was invalid.

	Attr msg:	The error message.

	Attr path:	The path to the error, as a list of keys in the source data.

InvalidList class

Class definition

	
class onctuous.errors.InvalidList(errors)

	List of captures errors for reporting to the end user.

	Attr errors:	Array of errors

	Attr msg:	Message associated with the first reported error

	Attr path:	Path associated with the first reported error

Public API

__init__

	
InvalidList.__init__(errors)

	Create a new list of errors.

	Parameters:	errors – list of errors to add initially

add

	
InvalidList.add(error)

	Push an error to the internal list

 Copyright 2012, Ludia Inc..
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 	v0.5.2

 	v0.5.1

 	v0.5.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Onctuous 0.5.2 documentation

Schema class

Class definition

	
class onctuous.schema.Schema(schema, required=False, extra=False)

	A validation schema.

The schema is a Python tree-like structure where nodes are pattern
matched against corresponding trees of values.

Nodes can be values, in which case a direct comparison is used, types,
in which case an isinstance() check is performed, or callables, which will
validate and optionally convert the value.

Public API

__init__

	
Schema.__init__(schema, required=False, extra=False)

	Create a new Schema.

	Parameters:	
	schema – Validation schema.

	required – Keys defined in the schema must be in the data.

	extra – Keys in the data need not have keys in the schema.

__call__

	
Schema.__call__(data)

	Validate data against self.schema. This simply is a shortcut for
validate method.

	Parameters:	data – input data to validate

	Returns:	validated input

	Raise :	InvalidList

validate

	
Schema.validate(path, schema, data)

	Validate data against this schema.

	Parameters:	
	path – (list) current path in the object, Starts as []

	schema – schema to validate agains

	data – input data to validate

	Returns:	validated input

	Raise :	InvalidList

 Copyright 2012, Ludia Inc..
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 	v0.5.2

 	v0.5.1

 	v0.5.0

 Navigation

 	
 index

 	
 previous |

 	Onctuous 0.5.2 documentation

Schema validators and markers

Markers

Marker base class

	
class onctuous.validators.Marker(schema, msg=None)

	Mark nodes for special treatment.

Optional Class

	
class onctuous.validators.Optional(schema, msg=None)

	Mark a node in the schema as optional.

Required Class

	
class onctuous.validators.Required(schema, default=..., msg=None)

	Mark a node in the schema as being required.

Extra Method

	
onctuous.validators.Extra(_)

	Allow keys in the data that are not present in the schema.

Validators

Msg

	
onctuous.validators.Msg(schema, msg)

	Report a user-friendly message if a schema fails to validate.
Messages are only applied to invalid direct descendants of the schema.

Coerce

	
onctuous.validators.Coerce(target_type, msg=None)

	Coerce a value to a type. If the input value of the validator is already
of this type, tha value is retured immediately to prevent stupid crash like
datetime(datime()). This way, Coerce can safely be used to make sure the
type is OK.

If the type constructor throws a ValueError, the value will be marked as
Invalid.

	Parameters:	target_type – target type for the coercion operation. May be any type

or callable.

IsTrue

	
onctuous.validators.IsTrue(msg=None)

	Assert that a value is true, in the Python sense.
“In the Python sense” means that implicitly false values, such as empty
lists, dictionaries, etc. are treated as “false”:

IsFalse

	
onctuous.validators.IsFalse(msg=None)

	Assert that a value is false, in the Python sense.

Boolean

	
onctuous.validators.Boolean(msg=None)

	Convert human-readable boolean values to a bool.

Accepted values are 1, true, yes, on, enable, and their negatives.
Non-string values are cast to bool.

Any

	
onctuous.validators.Any(*validators, **kwargs)

	Use the first validated value.

	Parameters:	msg – Message to deliver to user if validation fails.

	Returns:	Return value of the first validator that passes.

All

	
onctuous.validators.All(*validators, **kwargs)

	Value must pass all validators.

The output of each validator is passed as input to the next.

	Parameters:	msg – Message to deliver to user if validation fails.

Match

	
onctuous.validators.Match(pattern, msg=None)

	Value must match the regular expression.

Pattern may also be a compiled regular expression:

Sub

	
onctuous.validators.Sub(pattern, substitution, msg=None)

	Regex substitution.

Url

	
onctuous.validators.Url(msg=None)

	Verify that the value is a URL.

IsFile

	
onctuous.validators.IsFile(msg=None)

	Verify the file exists.

IsDir

	
onctuous.validators.IsDir(msg=None)

	Verify the directory exists.

PathExists

	
onctuous.validators.PathExists(msg=None)

	Verify the path exists, regardless of its type.

InRange

	
onctuous.validators.InRange(min=None, max=None, msg=None)

	Limit a value to a range.

Either min or max may be omitted.

	Raises Invalid:	If the value is outside the range and clamp=False.

Clamp

	
onctuous.validators.Clamp(min=None, max=None, msg=None)

	Clamp a value to a range.

Either min or max may be omitted.

Length

	
onctuous.validators.Length(min=None, max=None, msg=None)

	The length of a value must be in a certain range.

ToLower

	
onctuous.validators.ToLower(v)

	Transform a string to lower case.

ToUpper

	
onctuous.validators.ToUpper(v)

	Transform a string to upper case.

Capitalize

	
onctuous.validators.Capitalize(v)

	Capitalise a string.

Title

	
onctuous.validators.Title(v)

	Title case a string.

 Copyright 2012, Ludia Inc..
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 	v0.5.2

 	v0.5.1

 	v0.5.0

 Navigation

 	
 index

 	Onctuous 0.5.2 documentation

Index

 _
 | A
 | B
 | C
 | E
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | V

_

 	

 	__call__() (onctuous.schema.Schema method)

 	

 	__init__() (onctuous.errors.InvalidList method)

 	

 	(onctuous.schema.Schema method)

A

 	

 	add() (onctuous.errors.InvalidList method)

 	All() (in module onctuous.validators)

 	

 	Any() (in module onctuous.validators)

B

 	

 	Boolean() (in module onctuous.validators)

C

 	

 	Capitalize() (in module onctuous.validators)

 	Clamp() (in module onctuous.validators)

 	

 	Coerce() (in module onctuous.validators)

E

 	

 	Extra() (in module onctuous.validators)

I

 	

 	InRange() (in module onctuous.validators)

 	Invalid (class in onctuous.errors)

 	InvalidList (class in onctuous.errors)

 	IsDir() (in module onctuous.validators)

 	

 	IsFalse() (in module onctuous.validators)

 	IsFile() (in module onctuous.validators)

 	IsTrue() (in module onctuous.validators)

L

 	

 	Length() (in module onctuous.validators)

M

 	

 	Marker (class in onctuous.validators)

 	Match() (in module onctuous.validators)

 	

 	Msg() (in module onctuous.validators)

O

 	

 	Optional (class in onctuous.validators)

P

 	

 	PathExists() (in module onctuous.validators)

R

 	

 	Required (class in onctuous.validators)

S

 	

 	Schema (class in onctuous.schema)

 	SchemaError (class in onctuous.errors)

 	

 	Sub() (in module onctuous.validators)

T

 	

 	Title() (in module onctuous.validators)

 	ToLower() (in module onctuous.validators)

 	

 	ToUpper() (in module onctuous.validators)

U

 	

 	Url() (in module onctuous.validators)

V

 	

 	validate() (onctuous.schema.Schema method)

 Copyright 2012, Ludia Inc..
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 	v0.5.2

 	v0.5.1

 	v0.5.0

 _static/minus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		Onctuous 0.5.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Ludia Inc..
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 		latest

 		v0.5.2

 		v0.5.1

 		v0.5.0

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/down.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

