
Onctuous Documentation
Release 0.5.1

Jean-Tiare Le Bigot

November 01, 2012

CONTENTS

i

ii

CHAPTER

ONE

OVERVIEW

Onctuous is a fluid and pleasing to use validation tool you will love to use. Originally based on Voluptuous code
by Alec Thomas <alec@swapoff.org>, we first fixed long outstanding issues like Python builtins collision and added
support for default values.

The goal of Onctuous is to make it simple and smooth.

• You can write your own validators

• You can specify defaults. The best ? They are not required to pass validation themselves

• You can write readable code. This is not based on json schema specification, on purpose

You can use Onctuous to validate list, scalar (regular variables) or dict. For this purpose, you will need to
define a so-called Schema and call the Schema with the input to validate. In case of success, it will return the
validated input, possibly filtered or edited according to your rules

1

https://github.com/alecthomas/voluptuous
mailto:alec@swapoff.org

Onctuous Documentation, Release 0.5.1

2 Chapter 1. Overview

CHAPTER

TWO

DOCUMENTATION

2.1 User guide

2.1.1 Getting started with Onctuous

Onctuous is a fluid and pleasing to use validation tool you will love to use. Originally based on Voluptuous code
by Alec Thomas <alec@swapoff.org>, we first fixed long outstanding issues like Python builtins collision and added
support for default values.

The goal of Onctuous is to make it simple and smooth.

• You can write your own validators

• You can specify defaults. The best ? They are not required to pass validation themselves

• You can write readable code. This is not based on json schema specification, on purpose

You can use Onctuous to validate list, scalar (regular variables) or dict. For this purpose, you will need to
define a so-called Schema and call the Schema with the input to validate. In case of success, it will return the
validated input, possibly filtered or edited according to your rules

Installation

$ pip install onctuous

Example usage

Validate a scalar

from onctuous import Schema

validate_is_int = Schema(int)

Validate 42 (this will run fine)
validated = validate_is_int(42)

Validate "toto" (this will raise ‘‘InvalidList‘‘ containing a list of errors)
validated = validate_is_int("toto")

3

https://github.com/alecthomas/voluptuous
mailto:alec@swapoff.org

Onctuous Documentation, Release 0.5.1

Validate a list

Using the same idea, you can validate a list of int

from onctuous import Schema

validate_is_int_list = Schema([int])

This will run fine
validated = validate_is_int_list([42, 2, 7])

This will raise ‘‘InvalidList‘‘ containing a list of errors
validated = validate_is_int_list([2, 7, "toto"])

But we can also use on of the bundled validators and check the URL looks to be valid for example and even supply a
custom error message!

from onctuous import Schema, Url

validate_is_urls = Schema([Url(msg="Ooops, this is *not* a valid URL")])

This will run fine
validated = validate_is_urls(["www.example.com", "ftp://user:pass@ftp.example.com:42/toto?weird/path"])

This will raise ‘‘InvalidList‘‘ containing a list of errors
validated = validate_is_urls([2, 7, "toto"])

Validate a dictionary

Again, this is the same concept with some more niceties. For example, here is a basic user schema:

from onctuous import Schema, Url

validate_user = Schema({
’firstname’: unicode,
’lastname’: unicode,
’age’: int,
’website’: Url(msg="Ooops, this is *not* a valid URL"),

})

use it...

But wait, I don’t want megative ages, do I ?

from onctuous import Schema, Url, InRange, All

validate_user = Schema({
’firstname’: unicode,
’lastname’: unicode,
’age’: All(int, InRange(min=0, msg="Uh, ages can not be negative...")),
’website’: Url(msg="Ooops, this is *not* a valid URL"),

})

use it...

Have you noticed how this uses All to specify that both int and range conditions must ne met ?

What if I want to make the “Website” field optional ? Let me introduce Markers

4 Chapter 2. Documentation

Onctuous Documentation, Release 0.5.1

from onctuous import Schema, Url, InRange, All, Optional

validate_user = Schema({
’firstname’: unicode,
’lastname’: unicode,
’age’: All(int, InRange(min=0, msg="Uh, ages can not be negative...")),
Optional(’website’): Url(msg="Ooops, this is *not* a valid URL"),

})

use it...

You could also have used the ‘Required’ Marker with a default value. This is very usefull if you do not want to spend
your whole time writing if key in data....

from onctuous import Schema, Url, InRange, All, Required

validate_user = Schema({
’firstname’: unicode,
’lastname’: unicode,
’age’: All(int, InRange(min=0, msg="Uh, ages can not be negative...")),
Required(’website’, "#"): Url(msg="Ooops, this is *not* a valid URL"),

})

use it...

It is worth noting that that the provided default value does not need to pass validations. You can use it as a “Marker”
further in you application.

Nested and advanced validations

You can nest shemas. You actually did it in the previous example where scalars are nested into a dict or a list. But you
can arbitrarily nest lists into dict and the other way around, as you need.

For example, let’s say you are writing a blog post which obviously has an author and maybe some tags whose len are
between 3 and 20 chars included.

from onctuous import Schema, All, Required, Length, InRange

Same schema as user above. I just removed the Schema instanciation but
could have kept it. It’s just more natural
user = {

’firstname’: unicode,
’lastname’: unicode,
’age’: All(int, InRange(min=0, msg="Uh, ages can not be negative...")),
Required(’website’, "#"): Url(msg="Ooops, this is *not* a valid URL"),

}

validate_post = Schema({
’title’: unicode,
’body’: unicode,
’author’: user, # look how you can split a schema into re-usable chunks!
Optional(’tags’): [All(unicode, Length(min=3, max=20))],
Required(’website’, "#"): Url(msg="Ooops, this is *not* a valid URL"),

})

use it...

That’s all for nesting.

2.1. User guide 5

Onctuous Documentation, Release 0.5.1

You could also use the Extra special key to allow extra fields to be present while still being valid.

When instanciating the schema, there are also a global required and extra parameters that can optionally be set.
They both default to False

Going further

There are tons of bundled validators, see the full API documentation for a full list.

2.1.2 Extending DynamoDB-mock

Folder structure

Onctuous
+-- onctuous => the real code
| +-- tests
| +-- unit => all individual validators and low level logic
| ‘-- functional => global behovior
+-- docs

‘-- pages => what you are reading

Adding a custom validator

If you want to contribute to Onctuous (we would love it btw), you will need to add your custom validator into
ddmock.validators module. Otherwise, put it wherever you want, there are no restrictions.

Technically speaking, any callable can be a validator.

All validators will look like this:

Parent function: loads the parameters
def ValidatorName(param1, param2, ..., msg=None):

this ’inner’ function does the real job and is called by ‘‘Onctuous‘‘
def f(v):

if some condition:
return v # All changes done to the value will be reflected in the validated object

raise Invalid(msg or ’Ooops: "Some Condition" was not met!’)
return f

For example, here is the Url validator:

def Url(msg=None):
"""Verify that the value is a URL."""
def f(v):

try:
urlparse.urlparse(v)
return v

except:
raise Invalid(msg or ’expected a URL’)

return f

That’s all tou need to do!

6 Chapter 2. Documentation

Onctuous Documentation, Release 0.5.1

Adding a custom marker

Sadly, this is quite more invasive to do and will probably require you to patch the hearth of Onctuous.

Markers lives in the same module as Validators: ddmock.validators and are also callable.

The most simple Marker you can do is the “Optional” marker:

class Optional(Marker):
"""Mark a node in the schema as optional."""

But you could override __init__ or __call__ for instance.

Then, Marker presence is detected in Schema._validate_dict in module ddmock.schema, that is to say, the
heart of Onctuous

2.1.3 Change log - Migration guide.

Onctuous 0.5.1

This section documents all user visible changes included between Onctuous versions 0.5.0 and Onctuous versions
0.5.1

Includes niceties and bugfixes according to real-world(tm) libraries ddbmock and dynamodb-mapper.

Additions

• official, full documentation

Changes

• split onctuous into sub-modules

• better error messages

• support for None as a default value

Onctuous 0.5.0

This section documents all user visible changes included between Voluptuous versions 0.4.2 and Onctuous versions
0.5.0

Initial Voluptuous fork by Ludia. There was no changelog before.

Additions

• default parameter to Required marker.

• 100% unit/functional tests

• lots comments

2.1. User guide 7

Onctuous Documentation, Release 0.5.1

Changes

• Renamed all validators to avoid built-in collisions

• InvalidList does not accept empty errors array

• lots of code cleanups

Removal

• defaults_to. It was inneficient and failed to add default value.

• most doctests

2.2 Api reference

2.2.1 Errors

SchemaError class

class onctuous.errors.SchemaError
An error was encountered in the schema.

Invalid class

class onctuous.errors.Invalid(message, path=None)
The data was invalid.

Attr msg The error message.

Attr path The path to the error, as a list of keys in the source data.

InvalidList class

Class definition

class onctuous.errors.InvalidList(errors)
List of captures errors for reporting to the end user.

Attr errors Array of errors

Attr msg Message associated with the first reported error

Attr path Path associated with the first reported error

Public API

__init__
InvalidList.__init__(errors)

Create a new list of errors.

Parameters errors – list of errors to add initially

8 Chapter 2. Documentation

Onctuous Documentation, Release 0.5.1

add
InvalidList.add(error)

Push an error to the internal list

2.2.2 Schema class

Class definition

class onctuous.schema.Schema(schema, required=False, extra=False)
A validation schema.

The schema is a Python tree-like structure where nodes are pattern matched against corresponding trees of
values.

Nodes can be values, in which case a direct comparison is used, types, in which case an isinstance() check is
performed, or callables, which will validate and optionally convert the value.

Public API

__init__
Schema.__init__(schema, required=False, extra=False)

Create a new Schema.

Parameters

• schema – Validation schema.

• required – Keys defined in the schema must be in the data.

• extra – Keys in the data need not have keys in the schema.

__call__
Schema.__call__(data)

Validate data against self.schema. This simply is a shortcut for validate method.

Parameters data – input data to validate

Returns validated input

Raise InvalidList

validate
Schema.validate(path, schema, data)

Validate data against this schema.

Parameters

• path – (list) current path in the object, Starts as []

• schema – schema to validate agains

• data – input data to validate

Returns validated input

Raise InvalidList

2.2. Api reference 9

Onctuous Documentation, Release 0.5.1

2.2.3 Schema validators and markers

Markers

Marker base class

class onctuous.validators.Marker(schema, msg=None)
Mark nodes for special treatment.

Optional Class

class onctuous.validators.Optional(schema, msg=None)
Mark a node in the schema as optional.

Required Class

class onctuous.validators.Required(schema, default=..., msg=None)
Mark a node in the schema as being required.

Extra Method

onctuous.validators.Extra(_)
Allow keys in the data that are not present in the schema.

Validators

Msg

onctuous.validators.Msg(schema, msg)
Report a user-friendly message if a schema fails to validate. Messages are only applied to invalid direct descen-
dants of the schema.

Coerce

onctuous.validators.Coerce(type, msg=None)
Coerce a value to a type.

If the type constructor throws a ValueError, the value will be marked as Invalid.

IsTrue

onctuous.validators.IsTrue(msg=None)
Assert that a value is true, in the Python sense. “In the Python sense” means that implicitly false values, such as
empty lists, dictionaries, etc. are treated as “false”:

10 Chapter 2. Documentation

Onctuous Documentation, Release 0.5.1

IsFalse

onctuous.validators.IsFalse(msg=None)
Assert that a value is false, in the Python sense.

Boolean

onctuous.validators.Boolean(msg=None)
Convert human-readable boolean values to a bool.

Accepted values are 1, true, yes, on, enable, and their negatives. Non-string values are cast to bool.

Any

onctuous.validators.Any(*validators, **kwargs)
Use the first validated value.

Parameters msg – Message to deliver to user if validation fails.

Returns Return value of the first validator that passes.

All

onctuous.validators.All(*validators, **kwargs)
Value must pass all validators.

The output of each validator is passed as input to the next.

Parameters msg – Message to deliver to user if validation fails.

Match

onctuous.validators.Match(pattern, msg=None)
Value must match the regular expression.

Pattern may also be a compiled regular expression:

Sub

onctuous.validators.Sub(pattern, substitution, msg=None)
Regex substitution.

Url

onctuous.validators.Url(msg=None)
Verify that the value is a URL.

2.2. Api reference 11

Onctuous Documentation, Release 0.5.1

IsFile

onctuous.validators.IsFile(msg=None)
Verify the file exists.

IsDir

onctuous.validators.IsDir(msg=None)
Verify the directory exists.

PathExists

onctuous.validators.PathExists(msg=None)
Verify the path exists, regardless of its type.

InRange

onctuous.validators.InRange(min=None, max=None, msg=None)
Limit a value to a range.

Either min or max may be omitted.

Raises Invalid If the value is outside the range and clamp=False.

Clamp

onctuous.validators.Clamp(min=None, max=None, msg=None)
Clamp a value to a range.

Either min or max may be omitted.

Length

onctuous.validators.Length(min=None, max=None, msg=None)
The length of a value must be in a certain range.

ToLower

onctuous.validators.ToLower(v)
Transform a string to lower case.

ToUpper

onctuous.validators.ToUpper(v)
Transform a string to upper case.

12 Chapter 2. Documentation

Onctuous Documentation, Release 0.5.1

Capitalize

onctuous.validators.Capitalize(v)
Capitalise a string.

Title

onctuous.validators.Title(v)
Title case a string.

2.3 Indices and tables

• genindex

• modindex

• search

2.3. Indices and tables 13

Onctuous Documentation, Release 0.5.1

14 Chapter 2. Documentation

CHAPTER

THREE

CONTRIBUTE

Want to contribute, report a but of request a feature ? The development goes on BitBucket:

• Download: http://pypi.python.org/pypi/onctuous

• Report bugs: https://bitbucket.org/Ludia/onctuous/issues

• Fork the code: https://bitbucket.org/Ludia/onctuous/overview

15

http://pypi.python.org/pypi/onctuous
https://bitbucket.org/Ludia/onctuous/issues
https://bitbucket.org/Ludia/onctuous/overview

